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ABSTRACT: In this study, we will look at a mathematical model that compares the growth of two different 

species. The current study seeks to investigate the functions of logistic growth and food-constrained growth, 

two unique growth models. We demonstrated the key features that make semi-trivial and coexistence 

solutions asymptotically stable. Competitive exclusion of a food-limited population will occur if the 

population's carrying capacity increases as a result of logistical growth, and the opposite is also true. 
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1. INTRODUCTION 

At each and every level of the natural world, there 

is a robust competition between different species. 

In order to provide information on the growth 

rates of two species at low (Malthusian growth) 

and high (logistic growth) densities, mathematical 

models are constructed and analyzed. This is done 

in order to provide information on the growth 

rates of the two species when they are only 

impacted by their own populations, which is a 

phenomena known as intraspecific competition 

[1]. Interspecific competition is a phenomenon 

that is being investigated via extended models in 

order to gain a better understanding of how 

different species interact with one another when 

they are competing for limited resources [6]. 

Competition between species has the effect of 

lowering the per capita growth rates of both 

species. According to the research that has been 

done, the development rules that are the most 

well-known and widely used were established in 

[2, 3, 7, 9]. There are a number of biological 

difficulties that arise when considering 

competition models between two species that have 

different development roles [2, 3, 7, 9]. The 

purpose of this research is to present a competitive 

model that is founded on the idea of critical 

population density and adheres to a variety of 

growth principles. In light of this, the objective of 

the present research is to develop a fundamental 

model of competition that is based on the idea that 

two distinct species compete with one another 

either interspecifically or intraspecifically at two 

distinct rates of growth. 

The paper is structured in the following manner. 

We present the auxiliary results that were applied 

in the process of analyzing the model in Section 2. 

Additionally, we provide a brief overview of the 
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reaction terms for species u and w, which will be 

utilized throughout the entirety of the work. 

Through the process of linearizing the problem 

that is being considered, Section 3 investigates the 

equilibrium analysis of semi-trivial steady states 

and coexistence solutions. 

 

2. METHOD OF ANALYSIS 

We examine the following set of nonlinear 

differential equations while accounting for two 

distinct species. 

(1) 

where the carrying capacities of the species u and 

w are denoted by K1 and K2, respectively, and the 

densities of the populations at time t are denoted 

by u(t) and w(t), respectively. A constant that is 

intrinsic growth rates of u and w are represented 

by the symbols r1 and r2, respectively. The 

evaluation of the stability of nonlinear systems 

can be carried out in a variety of different ways. 

Two well-known methods for detecting whether 

or not a nonlinear system is stable are the 

Lyapunov stability criterion [8, 10] and the 

LaSalle invariance principle [4, 5]. You can get 

more information about both methods here. In 

order to do a mathematical analysis of model (1), 

we take into consideration the Hartman-Grobman 

theorem, which is described in more detail below: 

Theorem 1. (Hartman-Grobman) 

If there are no zero or pure imaginary eigenvalues 

in the linearization matrix, then the phase portrait 

of the system that is close to the equilibria (u, v) 

can be derived from the phase portrait of the linear 

system by employing a continuous shift in 

coordinates. This is also possible if the 

linearization matrix does not contain any zero or 

pure imaginary eigenvalues. 

Featured point of interest 1. This shows that in the 

event that the matrix does not have any zero or 

pure imaginary eigenvalues, the stability 

characteristics of the equilibria (u, v) of the 

system are similar to those of the equilibrium 0 of 

the linear system. To be more explicit, this 

indicates that the matrix does not possess any 

eigenvalues that are pure imaginary. 

Because it is extremely rare for an analytical 

formula to be able to be formed for the solution of 

(1), we are often needed to either construct a 

numerical solution or explore the qualitative 

behavior of the response. This is because (1) is a 

problem that is difficult to solve. A qualitative 

analysis is found to be of tremendous aid when it 

comes to the building of numerical solutions, as 

the findings of this study have demonstrated. The 

study of the solutions in the phase plane (u, w) is 

something that we find to be of great convenience 

in any situation that may arise. In the sake of 

keeping things as straightforward as possible, the 

two functions that are described below, Stability 

Analysis of a Nonlinear System with Different 

Growth Functions, shall be incorporated. After 

that, the system (1) will be rewritten in the 

following manner: 

 

(2) 

Any solution 

 
will be understood as a parametrized curve, which 

is what we mean when we talk about integral 

curves of the system at this point. The curve in 

question can be considered an essential 

component of the system. Through the utilization 

of the fact that the vector (du/dt, dw/dt) is tangent 

to the solution curve that is defined by (u(t), w(t), 



 

 

320                                                    JNAO Vol. 15, Issue. 1, No.15 :  2024 

we are able to achieve the outcome that we have 

been looking for. A graph that conveys the 

representation of a family of solutions is called a 

phase portrait. Depending on the requirements of 

the situation, it can be created numerically or from 

the direction field. Both methods are viable 

options. An issue that is related with both the 

numerical technique and the direction field 

approach is the requirement that the parameters in 

(2) be provided. This is a disadvantage that is 

associated with both of these approaches. 

The reason for this is because equilibria of a 

system occur at points where the coordinates 

concurrently have a derivative of zero. This gives 

rise to the aforementioned phenomenon. u(t) = u* 

and w(t) = w* are the constant solutions that 

satisfy the nonlinear system of equations f(u, w) = 

0 and simultaneously h(u, w) = 0. These points are 

referred to as the equilibrium, steady state, or 

critical points. There is another name for these 

solutions, and that is the optimal solutions. (u*, 

w*) = (0, 0), (K1, 0), and (0, K2) are the many 

equilibria that the system (2) is capable of 

achieving within its parameters. This will be 

followed by the incorporation of components for 

the purpose of testing the stability analysis at the 

equilibrium point. 

 

3. STABILITY ANALYSIS AT THE 

EQUILIBRIA 

Our initial step in this part was to linearize the 

system so that we could proceed with the analysis. 

Perform the following reorganization of the 

functions f(u,w) and h(u, w): 

 

(3) 

We begin by doing a calculation in order to locate 

the linearization matrices at the equilibria. 

 
The linearization matrices can be obtained by 

inserting the coordinates of the equilibria into 

these formulas. This allows us to attain the desired 

results. 

Equilibrium (0, 0): At the equlibrium point (0, 

0), four partial derivatives are 

 
Then the linear system 

 (4) 

and the linearization matrix at (0, 0) is 

 
corresponding eigenvalues of 

 which gives 

 and the eigenvectors 

Respectively, 

 

 
As a result of the fact that the eigenvalues of the 

linearization matrix (π,π) are both real and 

positive, one can arrive at the conclusion that the 

equilibrium point (0,0) is a repeller. From a 

biological point of view, when both of the species 

are present in the same ecological niche, they will 

be able to repel each other and depart the sub-

domain of the habitat until other considerations 

are taken into account. This will occur until other 

factors are taken into account. Whenever the 

system approaches this critical threshold, it is 

always unstable, as can be shown in Figure 1. 
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Figure 1. Both the Eigensystem and the phase 

portrait of the linear system (4) are located close 

to (0, 0). 

Following the calculation of the following terms, 

we are able to locate the linear system that is in 

equilibrium (0, K2). 

 

 
Then the linear system will be 

(5) 

and the linearization matrix at (0, K2) is 

 

 
As an example, 

 
and the corresponding eigenvectors 

 
based on that information. There is a real value for 

both of the eigenvalues of the matrix M(0, K2), 

and the signs of these eigenvalues are the opposite 

of themselves. Figure 2's left side illustrates that 

the equilibrium point (0, K2) is an unstable saddle 

point. This shows that the equilibrium point is 

unstable. The species u will be able to take 

advantage of a bigger quantity of natural resources 

in its oral habitat, which will allow it to 

outcompete the species w that is following the 

food-limited growth pattern. This will allow the 

species u to gain an advantage in the competition. 

The same is true for K1 = 3, and the same is true 

for K2 = 4, and the eigenvectors for each of these 

values are the same. 

 
The critical point (0,K2) is an asymptotically 

stable node, as illustrated in figure 2 (right), 

because the eigenvalues and the critical point are 

both equal to zero. Because of this, the first 

population will be wiped out if the second species 

is able to gain access to the resources more easily 

than the first population.  
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Figure 2. A phase picture of the linear system and 

the Eigensystem of the system (5)  

Equilibrium (K1, 0): The linear system can be 

obtained by simply applying the following 

formulae at the coordinates point of the equilibria. 

 
Now given nonlinear system converted to a linear 

system as 

 (6) 

and the linearization matrix at (K1, 0) is 

 
corresponding eigenvalues of 

 if   

 
Based on that information. Both of the 

eigenvalues of the matrix M(0, K2) are real, and 

each of them has the opposite sign. Their 

respective signs are opposite. We have arrived at 

the conclusion that the equilibrium point (K1, 0) is 

an unstable saddle point (refer to figure 3, left). 

This conclusion was reached as a result of the 

previous statement. Within the framework of the 

biological concept, it gives the impression that the 

expansion of the species X is no longer able to be 

maintained in a particular environment while the 

competition is going place. 

 

 

 

 

 
Figure 2. A representation of the eigensystem and 

phase of the linear system (5), with α equal to 2. 

Equilibrium (K1, 0): The linear system can be 

obtained by simply applying the following 

formulae at the coordinates point of the equilibria. 
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based on that information. Both of the eigenvalues 

of the matrix M(0, K2) are real, and each of them 

has the opposite sign. Their respective signs are 

opposite. We have arrived at the conclusion that 

the equilibrium point (K1, 0) is an unstable saddle 

point (refer to figure 3, left). This conclusion was 

reached as a result of the previous statement. 

Within the framework of the biological concept, it 

gives the impression that the expansion of the 

species X is no longer able to be maintained in a 

particular environment while the competition is 

going place.  

In a similar manner, if we set K1 to 4 and K2 to 3, 

while maintaining the same values for the other 

parameters mentioned earlier, we will obtain 1 

equal to –3 and 2 equal to 5/3, both of which are 

eigenvectors. 

 

 

 
 

 
Figure 3. The linear system's Eigensystem and 

phase portrait are both shown here. 

 

4. NUMERICAL SOLUTIONS 

The Runge-Kutta procedures of order four should 

be taken into consideration for numerical testing 

in order to solve the system of initial value 

problem. This is recommended for the purpose of 

solving the problem. 
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Figure 4 illustrates the numerical solutions to the 

equations (1) that describe the Logistic-Food 

constrained growth system. The equations are 

written with the values α = 0.5, r1 = r2 = 1.0, and 

(left) K1 = 3.0, K2 = 2.0, and (right) K1 = 2.0 = 

K2 with initial values u0 = w0 = 2.0. These values 

are chosen to represent the values of the variables.  

The carrying capacity K1 is the quantity that 

corresponds to the solution of the logistic equation 

when r1 equals r2 equals 1.0 and there are 

multiple carrying capacities, K1 greater than K2. 

In contrast, it is worth noting that the solution of 

the Food-limited equation goes to zero when the 

value of α is equal to 0.5, as illustrated on the left 

side of Figure 4. According to the illustration on 

the right side of Figure 4, one population coexists 

with the other when K1 equals K2. When the 

distributions of both populations' resources are 

equal, despite the fact that their growth functions 

are different from one another, it is said that the 

two populations are cooperating with one another. 

 

5. CONCLUSION 

Based on the model that was taken into 

consideration, it can be concluded that carrying 

capacity is a significant component that plays a 

role in deciding the outcome of competition 

between two species in a particular ecological 

niche. If we make the premise that carrying is the 

same for both species, then it is possible for them 

to come together and live together. The parameter 

α and the intrinsic growth rates are key factors 

that play a big influence in determining the 

survival of species. It is worth highlighting that 

these factors are substantial elements. To add 

insult to injury, this method can be utilized for 

certain species in whatever habitat to which they 

belong. 
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